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KBSTRACT 

We study the question of entropy stability for discrete approximations to 

hyperbolic systems of conservation laws. We quantify the amount of numerical 

viscosity present in such schemes, and relate it to their entropy stability by means 

of comparison. To this end, two main ingredients are used: the entropy variables 

and the construction of certain entropy conservative schemes in terms of plecewlse- 

linear finite element approximations. We then show that conservative schemes are 

entropy stable, if they contain more numerical viscosity than the above mentioned 

entropy conservative ones. 

I .  TIlE ENTROPY VARIABLES 

We consider seml-dlscrete schemes of the form 

d I 
- -  - ' [ fg+  I ~ -  f 9 -  I/2], ( I )  d t u v  ( t )  = '~x v 

which are consistent wlth the system of conservation laws 

a a 
a--f u +ggx I f ( u ) ]  = o,  ( x , t ) ~ R × [ O , ® )  (2) 

Here, f E f(u) = (fl,...,fN)T is a smooth flux function of the conservative 

variables u ~ u(x,t) = (Ul,...,uN) T u (t) denote the discrete solution along 

the grldline (x ,t) with hx E (xv+ 1 - x _ I) being the variable meshslze, 
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and iv+i/2 is the Llpschitz continuous numerical flux 

differential one (I) 

fv+l~ = f(Uv-p+l ..... U9+D)' f(u,u .... u) = f(u). 

consistent with 

(3) 

We are concerned here with the entropy stab ilit~ question of such schemes. To 

this end, let (U 5 U(u), F E F(u)) be an entropy pair associated with the system 

(2), such that 

= F T > O. (4) U~fu u' Uuu 

We ask whether the scheme (I) is entropy stable w.r.t, such pair, in the sense that 

it satisfies a discrete entropy inequality of the form 

d U(uv(t)) + 1 rC iF.+ V2 F Vj 0 (s) 

with Fv+ i~ being a consistent numerical entropy flux 

FV+I/2 = F(Uv_p+ 1 ..... Uv+p) , F(u,u ..... u) = F(u). (6) 

If, in particular, equality takes place in (5), we say that the scheme (I) is 

entropy conservative. We note in passing that if it holds for a large enough class 

of entropy pairs~ such a discrete entropy inequality is intimately related to both 

questions of convergence toward a limit solution as well as this limit solution 

being the unique physically relevant one, e.g. [I], [2], [3]. 

Making use of the entropy pair (4), Mock [4] (see also [5]), has suggested the 

following procedure to symmetrize the system (2)° 

Define the entropy variables 

aU 
v = v(u) = ~-- (u). (7) 

dtl 

(1)The same notations are used for differential and discrete fluxes; the distinction 
between the two is by the number of their arguments. 



54 

Thanks to the convexity of U(u) the mapping u÷v is one-to-one. Hence, one can 

make the change of variables u = u(v) which puts the system (2) into its equiva- 

lent symmetric form 

t u ( v ) ]  + ~ ~"T ~ x  | g ( v ) ]  = o, g (v )  ~ f ( u ( v ) ) .  (8 )  

The system (8) is symmetric in the sense that the Jacoblans of its temporal and 

spatial fluxes are 

H e H(v) =Tv [u(v)] > O, B e B(V) =Tv [g(v)]. (9) 

Indeed, if we introduce the so-called potential functions 

¢ ~ ¢(v) = vTu(v) - U(u(v)) 

* s *(v) = vTg(v) - F(u(v)), 

( l o )  

then making use of (4) we find 

u(v) = ~-~¢ 
~v ' 

_ ~ 
g(v) -~v ' 

(11) 

and hence the Jacobians H(v) and B(v) in (9), are the symmetric Hessians of 

¢(v) and ~(v), respectively. 

Example I.I. Consider the Euler equations 

~t 

P 

m + 

E 

m 

~ (Z+p) 

2 
m 

= O, p = (T - I).[E - ~], (12) 
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asserting the conservation of the density p, momentum m and energy E. Harten 

[6] has noted that this system is equipped with a family of entropy pairs; Godunov 

[7] and Hughes et al. [8] have studied the canonical choice 

(U = - pS, F = - mS), S = in(pp'q), (13) 

which leads to the entropy variables 

v ~ v2 = 1,-y, m ( 1 4 )  
P 

v 3 

The inverse mapping v+u can be found in [8]. We call attention to the fact that 

the corresponding potential pair in this case is given by (4 = (Y - l).p, 

ffi (~ - l).m), and hence, in view of (II), Euler equations can be rewritten in 

the intriguing form [I0] 

[gradvP] + ~ [gradvm] = 0. (15) 

Returning to our question of entropy stability, the answer provided in [9], 

[i0], consists of two main ingredients: the use of the entropy variables described 

above, and the comparison with appropriate entropy conservative schemes. To this 

end we proceed as follows. 

We use the entropy varlables--rather than the conservative ones--as our primary 

dependent quantities, by making the change of variables u = u(v ), e.g., [II}, 

[12]. The scheme (I) is now equivalently expressed as 

d__u (t) =- I [gv+l~- g~_I/~, u = u(v (t)), (16) 
dt ~x 

with a numerical flux 
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gv+l /2  = g (v  _p+ 1 . . . . .  Vv+p) , g( . . . .  v . . . . .  ) = f (  . . . .  u ( v )  . . . .  ) ,  (17)  

consistent with the differential one 

g(v,v ..... v) = g(v), g(v) = f(u(v)). (18) 

D e f i n i n g  
T 

Fv+ I/2 = v + igg+ 1/2- # (Vv+l )  , (19)  

T 
then multiplication on the left of (16) by v v gives 

d U ( u v ( t ) )  + | = ] [AVe+ I/2] , 

(20) 

A'v+ I~ ~ *(v,+ 1) - ~(vv)- 

In view of (I0), F +i~ is a consistent numerical entropy flux, and this brings us 

to (e.g., [13], [9, Theorem 5.2]) 

Theorem 1.2: The conservative scheme (16) is entropy stable (respectively~ 

entropy conservatlve)~ if the followln~ inequality (21a) (respectlvel%~ equality 

(21b)) holds 

(21a) 

Ave+ 1~gv+ I~ = A%+ I~ (21b) 

2. TIIE SCALAR PROBLEM 

We discuss the entropy 

Defining 

stability of scalar conservative schemes, N = I. 
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f(u v) + f(uv+ 1) - 2 g ~ + l ~  , 

Q~+ I~ . . . . . . . . . . . . . . . . .  ~"v~+ 1~ Avv+ I~ = vv+ 1 - v (22) 

then our scheme recast into the more convenient viscosity form 

1 ~F~d u ( t )  2Axl {f(uv+l) - f(uv+l)]  + 2~-~'-'x~ [Q~+l/#V +1/2- 0 1/#v~_I/2], (23) 

thus revealing the role of %+ I~ as the numerical viscosity coefficient [14]. 

According to (21), the scalar entropy conservative schemes are uniquely 

determined by g~+I/2= gv+ I~ where 

1 

g~+I/2= A%÷I/2 ~=0 g(v +l~(~))d~, vv+I/~¢) = v~ + ~Av +i/2. (24) 

Writing 

* ! d I i/~ ))d~ ' 
g~+1~ = ~ 0 ~ (~ - ~) g(v+ (25) 

and integrating by parts, these entropy conservative schemes assume the viscosity 

form (23), with viscosity coefficient Qv+ I~ = Q~+I/2 ' where 

, I 

Qv+I/2= f (2~ - 1) g ' (v  +l/2(~))d~. (26) 

We are now ready to characterize entropy stability, by comparison with the above 

entropy conservative schemes. 

Theor~ 2.1: The conse[yative scheme (23) is entrppy stablellf ' it contains 

mgre vlscosity than the ent!opy conservative one (26)~ i.@., 

Qg+ I/2<-- Or+ i/2 " (27) 

Proof: Multiplying by Av +i~ on both sides, the inequality (27) reads 
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~t 

Av+ i/2 %+ 1/2Av+ V2_< Av+ V2 %+ 4'2 Av+ V2' (28) 

or equivalently, consult (22), 

Av +i/2 [f(u ) + f(uv+ I) - 2gv+1/2 ] _< AVv+I/2 [f(u ) + f(u + I) - 2gv+i/]. (29) 

In view of (24), this yields 

Av+ I/2 g~+ i/2_< Av+ i/2 ~+ i/2 =- A~+ i/2, (30) 

and entropy stability follows by Theorem I.I. 

We note in passing that the entropy conservative viscosity, Or+l/2 is of 

order 0(IAv +i~), and consequently the entropy conservative schemes (24) are 

second order accurate. Indeed, change of variables ~ + i - ~ in (26) yields 

, i 

Qv+l/2= - f (25-I) g" (vv+I/2(1-~))d~ , (31) 
~=0 

and by averaging of (26) and (31) we find 

. I I 

Q~+ 1/2 : f ( ~ -  i/2 ) • f 
=0 n =0 

d 
~" g ' [nv +l/2(g) + ( l -n )  v +l/2(1-~)]dndg = 

= 2 

l 1 

f (~-1/2)2. f 
~=0 n=O 

g"(vv+ 1~n + (l-~)(l-n)])dnd~ • Av+ l~ ,  

(32) 

as asserted. Second order accuracy then follows in view of 

I~mma 2.2: Consider the,, cpnseryative schemes (25) with viscosity 

Qv+I/2 is Lipschitz continuous. Then these coefficient, Qv+i/2, such that hvv+i/2 , 

schemes are second-order accurate,~ ~n the,,,,sense that their truncation is of the 
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- - + X v _ l t ]  ( 3 3 )  O[[xv+ I xv] 2 + Ix v - Xv_l [2 + lxv+ I 2x v 

The proof of Lemma 2.2 is straightforward and therefore omitted. 

Theorem 2.1 together with Lemma 2.2 enable us to verify the entropy stability 

of first- as well as second-order accurate schemes. We consider a couple of 

examples. 

Example 2.3: Using the simple upper bound, see (32), 

Q~+I~_ 6 < !M~x Ig" (v ) I - IAv  +i/~,  (34) 

we obtain, on the right of (34), a viscosity coefficient which according to Theorem 

2.1 and Lemma 2.2 maintains both, entropy stability and second-order accuracy. 

Similar viscosity terms were previously derived in a number of special cases, e.g., 

[15], [16], [17]. We remark that the careful lengthy calculations required in those 

derivations is due to the delicate balance between the cubic order of entropy loss 

and the third-order dissipation in this case. 

Example 2.4: Consider the genuinely nonlinear case where f(u) is, say, 
1 2 

convex. The quadratic entropy function, U(u) = ~ u , leads to entropy variables 

which coincide with the conservative ones, g(v) ffi f(u). Thus, according to (32), 

viscosity, is required only at rarefactions where Au +i/2> 0, since 

sign(0v+i/) = slgn(Au +i/~) < 0 otherwise. A slm~le second-order accurate entropy 

stable flux of this kind is given by 

I f(½ (u v + Uv+l)) ~uv+ 1/2 > 0 I (35) 

f"+'/2= L½ (f(u)  + f(u,+1)) "u,.112< o 

S. SYSTEMS OF CONSERVATION LAWS 

We generalize the construction of the scalar entropy conservative schemes (24), 

to systems of conservation laws, using piecewise linear flnite-elements. 
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To this end, consider the weak formulation of (8) 

f w T ~ ~w T ~-~ [u (v ) ]dxd t  = f ~--~--- g(v)dxdt, 
a 

(36) 

Let the trial solutions w+w(x,t) : [k Wk(t) Hk (x) be chosen out of the typical 

finite-element set spanned by the C O "hat functions" 

Hk(X) = 

Xk - Xk-1 Xk_ 1 ~ x ~ x k 

Xk+ 1 - x 

~k+1 - Xk ~k! ~ !~k+1 

(37) 

The spatial part on the right of (36) yields--after change of variables, 

v+l 

x _  1 v-1 

1 1 

= -t f g(~+ i12(~))d~ - f 
= 0  ~ : 0  

g(v V~{))d~], ~÷V~) ° v ÷ ~v .~  a.  

(3s) 

A second-order mass lumping on the left of (36) leads to 

X~+l ^ ~+1 

[~(x,t) = X Vk(t)Hk(X)] = Ax f H (x) ~u ~ ~y [u(v (t))] + 0(lAvv+l~ 2) 
xv_ 1 v-1 

(39) 

Equating (38) and (39) while neglecting the quadratic error terms, we end up with, 

compare (24), 

1 

* * f g (v  + I I 2 (~ ) )d~ .  ( 4 0 )  ~t o / t )  ° - A.1 ~g,:+ 112- g,~- V~" g,,+ v2 = ~oo 

The resulting scheme (40) is entropy conservative since, consult (Ii), 

1 Avv+ g(v v + 5Av + l/2)d~ vv+l T do "vf dv g(v) - ~ % + ½ ,  (41) 
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in agreement with Theorem 1.2. Integration by parts along the lines which follow 

(25) shows that the entropy conservative schemes (40) can be also rewritten in the 

viscosity form 

l d u( t )  = i tf(U+l) f ( u  1)J +~ t%+1/2~v~+1,2 % 1,#v~ I,~ d-T ~ - 
(42) 

e 

with a numerical viscosity coefficent matrix, Ov+ 1/2= Q~+ i/2 , where 

, 1 

Qu+ I/2 = f (2~ - l).B(v + I/2 (~))d~, B(v) -= ~-~ [g(v)]. (43) 
~=0 

Once the entropy conservative schemes were identified for systems of conservation 

laws, we can repeat our previous arguments concerning the entropy stability of (42); 

in analogy with Theorem 2.1, we now have 

Theorem 3.1: The conservative,schem e (42) is entropy stable, 

more viscoslty than the entropy conservative one (40), i.e., 

if it contains 

1,2 QL 1,2 1,2-< 1,2 (44) 

If ,  in particular, Qv+ 1~ 
criterion is 

is symmetric, then a sufficient entropy stability 

Q~+ I/2! Or+ 1/2 ' (45) 

where the inequality is understood in the usual sense of order among symmetric 

matrices. 

Example 3.2: Consider the conservative scheme (42) with a numerical viscosity 

coefficient given by 

I 

%+112" I IB(v~+i/~)Id~. (46) 
~=0 
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Here the absolute value of a symmetric matrix is evaluated in the usual fashion from 
* 

its spectral representation, B = U AU, 

(47) 

Since 

<_ (48) 

(45) holds and entropy stability follows. 

Away from sonic points, (46) amounts to the usual upwind differencing, e.g., 

[18]. In the neighborhood of such sonic points, however, an exact evaluation of 

Qv+i/~ in (46) may turn out to be a difficult task. Yet, in view of Theorem 3.1, 

one can use instead simpler upper bounds. In [I0] this is achieved using the 

construction of a whole family of entropy conservative schemes which take into 

account the characteristic directions associated with the system (2). 
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