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PREFACE

The International Conference on Non-linear Hyperbolic Problems
was held in Saint-Etienne on January 13-17, 1986, QOur aim was to get an
overview of a branch of applied mathematics which has been expanding very
fast over the last few years. As we all know applications are possible in
many fields (aerodynamics, multifluid flows, combustion, detonics...), but
this involves difficulties of a theoretical as well as a numerical nature. It is
therefore not surprising that, in the end, papers dealing with theoretical
problems raised by the resolution of non-linear hyperbolic systems
outnumbered those which concentrated on numerical methods.

The number of participants, the diversity of the teams,
researchers and countries represented do not leave any doubt as to the
opportuneness of such a conference. It was particularly useful in as much as
it produced the original papers contained in this volume and also because it
helped establish conditions of scientific cooperation between research
teams. We are confident that the wish expressed by many participants to see
the conference become a regular fixture will be fulfilled.

The success of such an undertaking requires the help of many
people and organizations. We are particularly grateful to :

le Centre National de la Recherche Scientifique (CNRS),

the National Science Foundation (NSF),

la Direction des Recherches et Etudes Techniques (DRET, contrat

n°85/1392),

the European Research Office of the United States Army,

I'Académie des Sciences de Chine,

le Commissariat a I'Energie Atomique (CEA),

le Centre National d'Etudes Spatiales (CNES),

la Société de Mathématiques Appliquées et Industrielles (SMAI),

la Société Mathématique de France (SMF),

les collectivités territoriales (Mairie and Conseil général),

for their precious support.

We also wish to thank Nohra RAHMANI! and Héléne CHABREUIL who
greatly contributed to the success of the conference by attending to its
practical organization,

Claude CARASSO, Pierre-Arnaud RAVIART, Denis SERRE



THE ENTROPY DISSIPATION BY NUMERICAL VISCOSITY
IN NONLINEAR CONSERVATIVE DIFFERENCE SCHEMES

Eitan Tadmor*
School of Mathematical Sciences, Tel-Aviv University
and
Institute for Computer Applications in Science and Engineering

ABSTRACT

We study the question of entropy stability for discrete approximations to
hyperbolic systems of conservation laws. We quantify the amount of numerical
viscosity present in such schemes, and relate it to thelr entropy stability by means
of comparison. To this end, two main ingredients are used: the entropy variables
and the construction of certain entropy conservative schemes in terms of piecewise-
linear finite element approximations, We then show that conservative schemes are
entropy stable, if they contain more numerical viscosity than the above mentioned

entropy conservative ones,

1. THE ENTROPY VARIABLES

We consider semi-discrete schemes of the form

1
o () = - Ix Eor iy~ fu-1y)s w

which are consistent with the system of conservation laws

3 3

Frl + = [f(w)] = 0, (x,t)ERx[0,=) (2)
Here, f = f(u) = (fl,...,fN)T is a smooth flux function of the conservative
variables u Z u{x,t) = (ul,;..,uN)T, uv(t) denote the discrete solution along

- 1 _
the gridline (xv,t) with Axv = 5'(xv+l Xv—l) being the variable meshsize,

*Research was supported in part by NASA Contract Nos. NAS1-17070 and NAS1~18107
while the author was in residence at ICASE, NASA Langley Research Center, Hampton,
VA 23665, Additional support was provided by NSF Grant No. DMS85-03294 and ARO
Grant No. DAAG29-85-KR-0190 while in residence at the University of California, Los
Angeles, CA 90024, The author is a Bat-Sheva Foundation Fellow.
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and fv4-9§ is the Lipschitz continuous numerical flux consistent with

differential one(I)

fv*-y§= f(uv-p+1"°"“v+p)’ flu,u,..,u) = £(u). (3

We are concerned here with the entropy stability guestion of such schemes. To

this end, let (U 2 U(u), P = Flu)) be an entropy palr associated with the system
(2), such that

U f =F, U > 0. (&)
u

We ask whether the scheme (1) is entropy stable w.r.t. such pair, in the sense that
it satisfies a discrete entropy inequality of the form

d 1
3“&" U(ﬂv(t)) + E(-; [FU'*’ 1;2- FU- 1/2} _<_ 0, {5)

with F“+1b being a consistent numerical entropy flux
Fuﬁ-yéz F(HV*p+1""’uv+p)’ Flu,u,seo,u) = Flu). (6)

If, 1in particular, equality takes place in (5), we say that the scheme (1) is

entropy conservative. We note in passing that if it holds for a large enough class

of entropy pairs, such a discrete entropy inequality is intimately related to both
questions of convergence toward a limit solution as well as this limit solution
being the unique physically relevant one, e.g. [1], [2], [3].

Making use of the entropy pair (4), Mock [4] (see also [5]), has suggested the
following procedure to symmetrize the system (2).

Define the entropy variables

v = v =2 (). (7

3
I

(I)The same notations are used for differentlal and discrete fluxes; the distinction
between the two is by the number of their arguments,
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Thanks to the convexity of U(u) the mapping usv is one-~to-one., Hence, one can

make the change of variables u = u(v) which puts the system (2) into 1its equiva-

lent symmetric form
)+ g =0,  g(v) = £u(v)). ®

The system (8) is symmetric in the sense that the Jacobians of its temporal and

spatial fluxes are

Hz B =3 [ww] >0, Bz B == (g (9)

i

Indeed, if we introduce the so—called potential functions

6(v) = viu(v) = UCu(v))

¢ =
(10}
T
¥ 2 9(v) = v gv) - Flu(v)),
then making use of (4) we find
3
u(v) = 3% ,
(11)
3
glv) = 'al‘b,' 3
and hence the Jacobians H(v) and B(v) 1in (9), are the symmetric Hessians of
${v) and P{(v), respectively.
Example 1.1, Consider the Euler equations
p m
3 3 2 m2
el m | A +p = 0, p=(y = 1)[E ~ 731’ (12)
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asserting the conservation of the density p, momentum m and energy E, Harten
[6] has noted that this system is equipped with a family of entropy palrs; Godunov
[7] and Hughes et al, [8] have studied the canonical choice

(U=-pS, F=~ms), s = 1a(ps ¥), a3

which leads to the entropy variables

P - -
vy E + ) (S -y -1
vE |v N s A m (14)
2 p
vy [+

The inverse mapping wv*u  can be found in [8]. We call attention to the fact that
the corresponding potential pair in this case is given by ($ = (y = 1)+p,

¥ = (y - 1)ewm), and hence, in view of (11), Euler equations can be rewritten in
the intriguing form [10]

3 3 a
3T [gradvp] t 5 [gradvm] = 0. (15)

Returning to our question of entropy stability, the answer provided in [9],
[10], consists of two main ingredients: the use of the entropy variables described
above, and the comparison with appropriate entropy conservative schemes. To this
end we proceed as follows,

We use the entropy variables—-rather than the conservative ones—-—-as our primary
dependent quantities, by making the change of variables u, = u(vv}, e.g., [11],

{12]. The scheme (1) is now equivalently expressed as

d 1
TE o) = - 3;: {gv+_yb- 8y ) u = u(vv(t)), (16}

with a numerical flux
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gv+-Ub' g(vv_p+1,...,vv+p), 2loeasVyaae) = £(aau,ulv),aa.), an

consistent with the differential one

g(v,v,000,v) = glv), glv) = £(u(v)). (18)
Defining
= of _
F\H- 1/2 - v\)+1g\)+ 1/2 w(v\ﬁ-l )5 (19)
then multiplication on the left of (16) by v"f gives
d 1 1 T
e Ve, (00 + = (R, I~ Fy- 1/} = m Ve o Byt 1y~ Ay iy
Y v (20)

LA 1/2E w(vw-l) - \p(vv).

In view of (10), F"H_ 1/2 is a consistent numerical entropy flux, and this brings us

to (e.g., [13], [9, Theorem 5.2])

Theorem 1.2: The conservative scheme (16) is entropy stable (respectively,

entropy conservative), if the following inequality (2l1a) (respectively, equality
(21b)) holds

T
Bvys 1/2 Bu+ 1/2S' Ayt 1 (212)
AvY g = Ay (21v)
vt 1y Bos 1y vkl
2, THE SCALAR PROBLEM
We discuss the entropy stability of scalar conservative schemes, N = 1.

Defining
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f(u\)) * f(uv+1) " 2gv+ Yy

Qa1 = v AT Y T Yy (22)

AV\H_ 1/2

then our scheme recast into the more convenient viscosity form

d 1 1
q o (®) = g 1) = By, D g 10y, 18vy, 1 = O 18- 1) 2%

thus revealing the role of Qv-!- 1!2 as the numerical viscosity coefficlent [14].
According to (21), the scalar entropy conservative schemes are uniquely

*
determined by B4 ;/2 = g4 3/2 where

; =ﬂv—+—l/2= } (v (€))aE, v, 1(E) = v + EAV (24)
Byt 1/2 AV\)+ 1/2 £=0 &V 1/2 *ovt 1/2 v vt 1/2'
Writing
1
8* y,= f &G - glv . 1,(E))dE, (25)
v+ /2 £=O dE 2 vt /2

and integrating by parts, these entropy conservative schemes assume the viscosity

*
form (23), with viscosity coefficient Q. ;/2= Q. Yy where

1
*
Q. 13" g'LO e - D g7lv,, 1/2(5))d£. (26)

We are now ready to characterize entropy stablility, by comparison with the above

entropy conservative schemes,

Theorem 2.1: The conservative scheme (23) is entropy stable, if it contains

more viscosity than the entropy conservative one (26), i.e.,

*
Qe 17, L O Iy, * 27

Proof: Multiplying by A on both sides, the inequality (27) reads

VU+ 1/2
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*
AV\H' 1/2 Qv+ 1/2 Avv-o- 1/2_<. AV\H. 1/2 Q\H' 1/2 AV\H. 1/2 ’ (28)

or equivalently, consult (22),

*
by, Iy [£Cu)) + £Cu ) - 28, 1/2] <av Yy (fu) + £u ) - 28, 1!2}. 29

In view of (24), this yields

*
ﬁvv-i- 1/2 Bys 1/2-5- Avv+ 1/2 LN 1/2 = M)\H- 1/'2 ’ (30)

and entropy stability follows by Theorem 1.l.

*
We note in passing that the entropy conservative viscosity, Qv+ vy
order

is of
0(|Avv+ UJ)’ and consequently the entropy conservative schemes (24) are
second order accurate, Indeed, change of variables E+1 -k in (26) yields

1
*
Qs =~ gio (26-1) g” (v, 1/2(1-5»«15, 30
and by averaging of (26) and (31) we find
* 1 1 1 d
ety = [ @My e [ o gTinv 06) + (mn) vy g (1-8) dndt =
£=0 n=0 (32)

1 2
=2 [ &Y.
£=0

1
o g v, 1/2[&'; + (1-g)(1-n)])dndg « av Yy >

as asserted, Second order accuracy then follows in view of

Lemma 2.2: Consider the conservative schemes (25)

Q 1/
such that o2
Qv+ 1/2 » Such that AV\H' 1/2

with viscosity
coefficlent,

is Lipschitz continuous. Then these

schemes are second-order accurate, in the sense that their truncation is of the
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order

o |x + |xv 2, Ix - 2xv + xv_ll]. (33)

- x,1? =%,y
v v=-1 vl

v+1

The proof of Lemma 2.2 is straightforward and therefore omitted,
Theorem 2.1 together with Lemma 2.2 enable us to verify the entropy stability
of first— as well as second-order accurate schemes. We consider a couple of

examples.

Example 2,3: Using the simple upper bound, see (32),

*
Qv*-yé 7 Max lg= (v} v+~y} (34)

we obtain, on the right of (34), a viscosity coefficient which according to Theorem
2,1 and Lemma 2,2 maintains both, entropy stability and second-order accuracy.
Similar viscosity terms were previously derived in a number of special cases, e.g.,
[15], [16], [17]. We remark that the careful lengthy calculations required in those
derivations is due to the delicate balance between the cubic order of entropy loss

and the third-order dissipation in this case.

Example 2.4: Consider the genuinely nonlinear case where f(u) 1is, say,
convex. The quadratic entropy function, U(u) = % uz, leads to entropy variables
which coincide with the conservative ones, g(v) = f(u). Thus, according to (32),
viseosity is required only at rarefactions where Au +1/ >0, since
sign(Q o+ V) = sign(fu +]ﬁ£ <0 otherwise. A simple second~order accurate entropy
stable flux of this kind is given by

»

1
f(-f (uv + u

vl Auv&h§> 0

L 1= . 3%

1
5 (f(uv) + f(uv+l)) Auv*‘yé< 0

3. SYSTEMS OF CONSERVATION LAWS
We generalize the construction of the scalar entropy conservative schemes (24),

to systems of conservation laws, using pilecewise linear finite-elements.
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To this end, consider the weak formulation of (8)

awT

T g{v)dxdt, (36}

f W %—t— {u(v)}dxdt = |
Q 2

Let the trial solutions wrw{x,t) = Ek wk(t) Hk(x) be chosen out of the typical
finite—slement set spanned by the c® "hat functions"

x - Xk—l

e x < x (

X - Ko o

Hk(x) = . (37)

X - X

k+1

< x <
el T %k o= T2 T

The spatial part on the right of (36) yields~-after change of variables,

o+l aﬁv(x) “ v+l -
A glvi(x,t) = 21 v, (O, (x)1dx =
y-1 v (38)
1 H

= -[g,io 8(vy, y LN - €f=0 gy, 1848, vy 1LE) = vy * EAV

A second-order mass lumping on the left of (36) leads to

X941 3 N v+l 3 2
Xj H (x) 53 ulvix,t) =v§1vk(t)Hk(x)] = ax, wp [ulv (eN] + o(lav 1/4 ) (39)
v-1

Equating {38) and (39) while neglecting the quadratic error terms, we end up with,
compare {24),

3 Lotg * L (£))a 40
5t t}v{t) = EE: {gw I/z‘ A 1/], Bt 1/2" gio g(vv* 1;25 E. 3

The resulting scheme (40) is entropy conservative since, comsult (11),

T * ! Yorl g
8V y 1, Bys 1y ™ 5,{. o BTur 1y By * BV, 1 - [ @ gy = ey, D

v
v
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in agreement with Theorem 1,2, Integration by parts along the lines which follow
{25) shows that the entropy conservative schemes (40) can be also rewritten in the

viscosity form

o , 1 -
FE ) g () = FOy DT+ g [0 1, 8 1y~ Qv yy) G2

*
with a numerical viscosity coefficent matrix, Qv+—9§= Qv*-bé’ where

* 1 ]
Qe 1y = gio (26 = DeBlvy 1, ENdE, BV = 55 [&(W]. (43)

Once the entropy conservative schemes were identified for systems of conservation
laws, we can repeat our previous arguments concerning the entropy stability of (42);

in analogy with Theorem 2,1, we now have

Theorem 3,1: The conservative scheme (42) is entropy stable, if it contains

more viscosity than the entropy conservative one (40), i.e.,

T * T
bv I, Q4 I/ZAV\)+ 1/25_ v, 1y Q4 1/2AVV+ 1z (44)
If, in particular, Qv*~%& is symmetric, then a sufficient entropy stability
eriterion is
: (45)
Q\)+ 1/25. Qv+ 1,’2 ?

where the inequality is understood in the usual sense of order among symmetric

matrices,

Example 3.2: Consider the conservative scheme (42) with a numerical viscesity
coefficlent given by

1
Qs 1y ™ Eio BCv,, 1080 18, (46)
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Here the absolute value of a symmetric matrix is evaluated in the usual fashion from

*
its spectral representation, B = U AU,

*
IBv, 1,2(5))5 =U (v, z,z;i”%“‘fw y{ENIuty,, AL (47)

Since

(Z2-DAlvy, £ < Ay, yen], (48)

(45) holds and entropy stability follows.

Away from sonic points, (46) amounts to the usual upwind differencing, e.g.,
[18]. 1In the neighborhood of such sonic points, however, an exact evaluation of
Q. Uh in (46) may turn out to be a difficult task, Yet, in view of Theorem 3.1,
one can use instead simpler upper bounds. In {10} this 18 achieved using the
construction of a whole family of entropy conservative schemes which take into

account the characteristic directions associated with the system (2).
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